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Abstract—A classical formulation used in the optimal design
of elastic structures by distribution of isotropic material adopts
the compliance, i.e. twice the strain energy, as the objective
function, whereas volume plays the role of a constraint. It may
be shown that, considering one load case only, this formulation
is equivalent to a displacement-constrained volume minimiza-
tion. When multiple load cases are addressed, the volume-
constrained minimum compliance formulation is usually extended
by considering as the objective function a weighted sum of
the compliance values referring to each load case. This allows
achieving structures that can sustain the forces belonging to any
combination of the single load cases, with the main advantage that
a volume constraint is the only enforcement to be processed in
the optimization. Unfortunately, this formulation does not allow
for a local control of the displacement field due the single load
cases, as conversely required by technical codes used in structural
design. Recent contributions in the field of stress-constrained
topology optimization have shown that a very large number
of local enforcements can be efficiently tackled by combining
sequential convex programming and the augmented Lagrangian
method. In this work, this numerical approach is implemented
to solve minimum volume problems with multiple displacement
constraints. The proposed approach can be used to design optimal
structures in case of distributed loads or multiple load cases, with
a full control of the displacement field, no matter how many nodes
or load cases are considered. Applications are shown to discuss
mechanical features of the achieved optimal layouts as well as
parameters employed in the implemented numerical approach.

I. INTRODUCTION

Topology optimization allows customizing structural com-
ponents by distributing a limited amount of material within
a given design domain in order to match prescribed gaols
and constraints [1]. Among the others, the design operated
by distribution of isotropic material is widely adopted by
academia and industry to sketch lightweight structures, see
[2]. Assuming as unknown the density field that governs the
elastic modulus of the material, an optimization problem can
be formulated to minimize the work of external loads at equi-
librium (the so-called structural compliance), with constraints
on the allowed amount of material (the available volume
fraction). Since the compliance reads twice the strain energy,
the problem is in turn equivalent to finding the distribution
of the available amount of material such that the overall strain

energy is minimized, i.e. the stiffness is maximized. Minimum
compliance problems may be solved very efficiently, see in
particular in [3].

The design of two dimensional structural elements is herein
formulated as a displacement-constrained minimum volume
problem under multiple load cases, see [4]. A displacement-
constrained formulation allows investigating optimal layouts
by enforcing requirements at the serviceability limit state.
Maximum displacements are those prescribed e.g. by technical
codes. The amount of material needed to meet the constraints
is an outcome of the problem. This is used to perform
comparisons when different loads/limits are considered for the
same structural element.

When the controlled displacement is that at the loaded
point along the direction of the applied force, the work of
the external load at equilibrium is straightforwardly given
by the scalar product of the controlled displacement and the
applied force. Hence, the proposed problem is a compliance-
constrained minimum volume problem, which is in turn equiv-
alent to a classical volume-constrained minimum compliance
problem. Indeed, the same solution (up to a scaling) is expected
to arise when considering either problem, see [5].

When multiple load cases or distributed loads are dealt
with, the enforcement of a set of displacement constraints is
required. Recent contributions in the area of stress-constrained
topology optimization have shown that large sets of local en-
forcements can be efficiently tackled by combining sequential
convex programming and Augmented Lagrangian (AL) ap-
proaches without resorting to aggregation methods [1]. Within
the family of sequential programming approaches, the Method
of Moving Asymptotes (MMA) [6] is especially tailored for
structural optimization since it may linearize objective function
and constraints not only in the direct variables but also in
the reciprocal ones, see also the application in [7]. In [8]
an augmented Lagrangian approach is implemented where the
original penalization term, see [9], is normalized with respect
to the number of constraints.

In this work, this numerical approach is implemented to
solve minimum volume problems with multiple displacement
constraints. The proposed method can be used to design
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optimal structures in case of or multiple load cases including
distributed loads, with a full control of the displacement field,
no matter how many local constraints are dealt with. Prelim-
inary numerical applications are shown to discuss mechanical
features of the achieved optimal shapes. Parameters used in
the simulation are presented, as well.

II. DESIGN OF THE TOPOLOGY FOR MINIMUM VOLUME
UNDER DISPLACEMENT CONSTRAINTS

A. Formulation

A finite element discretization of a given design domain
is operated, employing standard four-node displacement-based
elements. A set of element-wise discrete design variables
is considered. In the e-th of the n elements of the mesh,
0 < ρe ≤ 1 is a variable that controls the “density” of material,
according to the Solid Isotropic Material with Penalization
(SIMP) [10]. In the e-th element, the constitutive matrix C(ρe)
may be written as:

C(ρe) = ρpe C0, (1)

where C0 is the inverse of the matrix for the material at full
density, and p is an interpolation parameter that penalizes inter-
mediate densities. In the numerical simulations, p is increased
from 3 to 6 during the optimization, see the continuation
approach implemented in [3].

A problem for the design of a displacement-constrained
topology of minimum weight can be stated as:

min
0<ρe≤1

W =
n∑
e=1

ρeW0,e

s.t. K(ρ)Uj = Fj , for j = 1...l,

ui ≤ ulim,i, for i = 1...m.

(2a)

(2b)
(2c)

In the above statement, the objective function is the volume
of the structural element, which is computed through the sum
of the element contributions ρeW0,e, being W0,e the volume
of the e-th element for ρe = 1.

Eqn.(2b) prescribes the discrete equilibrium of the struc-
tural element. The global stiffness matrix K(ρ) is computed
by assembling the element contributions that account for the
constitutive law given in Eqn.(1). The element stiffness matrix
can be conveniently written as ρpeK0,e, where K0,e refers to
ρe = 1. For the j–th of the l load cases, Fj is the load vector,
whereas Uj is the relevant nodal displacement vector.

The i–th of the m displacement components to be con-
trolled is denoted by ui. Eqn.(2c) enforces a prescribed limit
ulim,i, where ulim,i stands for the maximum displacement
allowed at the serviceability limit state. Assuming that ui is
an entry of Uj , i.e. that the i–th constraint refers to the j-th
load case, one has:

ui = LTi Uj , (3)

where Li is a vector made of zeros except for the entry
referring to the i–th displacement degree of freedom, which
takes unitary value.

B. Numerical implementation

Details are given in the following sections on the treatment
of the density field to avoid well-known numerical instabilities
while achieving crisp black/white layouts, and on the adopted
gradient–based solution approach to the considered multi-
constrained formulation.

1) Filtering: A linear filter [11], [12] is implemented on
the element variables ρe to avoid potential issues that are
well-known in topology optimization, i.e. the arising of mesh
dependence and checkerboard patterns. The original variables
ρe are mapped to the new set of ρ̃e as follows:

ρ̃e =
1∑
nHes

∑
n

Hes ρs,

Hes = max(0, rmin − dist(e, s)),

(4a)

(4b)

where dist(e, s) is the distance between the centroid of the e-
th and s-th element, and rmin is the filter radius. Hence, the
filtered densities are mapped to the set of projected (physical)
densities ρ̂e in order to achieve crisp black/white solutions, see
in particular the formulation proposed in [13]:

ρ̂e =
tanh(βη) + tanh(β(ρ̃e − η))
tanh(βη) + tanh(β(1− η)

, (5)

with η = [0, 1] and β = [1,∞]. In the numerical section η =
0.5, whereas β is smoothly increased during the simulations
from 2 to 16, by adopting the continuation approach in [3];
solutions are given in terms of maps of ρ̂e.

2) Solving algorithm: The optimization problem in Eqn.
(2) is solved via mathematical programming, adopting the
Method of Moving Asymptotes (MMA) [6] as minimizer.
Displacement constraints are treated following the Augmented
Lagrangian method implemented in [8].

At the k-th AL step, an unconstrained problem is consid-
ered whose objective function reads:

W +
1

m

m∑
i=1

(
a
(k)
i

ui
ulim,i

+
b(k)

2

(
ui

ulim,i

)2
)
, (6)

where a(k)i is the i-th entry of the vector a(k) of the lagrangian
multiplier estimators and b(k) > 0 is a penalty factor. MMA is
used to find an approximate solution of the normalized function
in Eqn.(6), which is in turn adopted to update the current values
of the lagrangian multiplier estimators and penalty factor for
the (k + 1)-th step. In the numerical simulations, the number
of MMA iterations per AL step has been set to 5. The overall
process is repeated until convergence is achieved, i.e. the
maximum difference in terms of the minimization unknowns
in x between two subsequent step is less than 10−3.

The adjoint method is used to compute sensitivity to run
the gradient-based minimizer, see e.g. [1]. Accordingly, ui in
Eqn. (3) does not change when adding at the right hand side
a zero function derived from the equilibrium of Eqn.(2b), i.e.:

−λTi (K(ρ)Uj − Fj) , (7)

where λi is any arbitrary but fixed vector. Hence, the derivative
of ui with respect to the h-th element unknown ρh may be
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computed as:

∂ui
∂ρh

= LTi
∂Uj

∂ρh
− λTi

∂K(ρ)

∂ρh
Uj − λTi K(ρ)

∂Uj

∂ρh
. (8)

After re-arrangement of terms, one has:

∂ui
∂ρh

=
(
LTi − λ

T
i K(ρ)

) ∂Uj

∂ρh
− λTi

∂K(ρ)

∂ρh
Uj , (9)

that can be in turn written as:
∂ui
∂ρh

= −λTi
∂K(ρ)

∂ρh
Uj , (10)

where λi satisfies the adjoint equation:

K(ρ)λi =

(
∂ui
∂Uj

)T
= Li. (11)

Eqn. (10) can be evaluated recalling that the derivative of the
e-th element stiffness matrix with respect to ρh is equal to
pρp−1
e K0,e, being K0,e the element stiffness matrix at full

density. This sensitivity is null if e 6= h.

The derivatives with respect to the filtered variables ρ̃e and
the physical ones ρ̂e can be easily evaluated by applying the
chain rule to Eqn. (4) and Eqn. (5), respectively. It is also
remarked that, at each iteration in the process, only one matrix
inverse must be computed to evaluate constraints and their
sensitivities. Indeed the linear systems in Eqn. (2b) and Eqn.
(11) share the same coefficient matrix.

III. NUMERICAL SIMULATIONS

Preliminary numerical simulations are presented in this
section. The 3L × L cantilever in Figure 1 is considered
adopting a mesh of 300 × 100 square finite elements. The
filter radius rmin is 8.75 times the length of the element side.
Unitary point forces, as well as a distributed load with unitary
resultant, are considered in the optimization.

A. Point forces in single load case

At first, numerical simulations are shown to investigate the
numerical method presented in Section II when addressing one
force only (in a single load case).

Optimal layouts are sought considering the force P only,
see Figure 1(a), and enforcing that the vertical displacement
read at the loaded point is less than 1.25, 1.50, 1.75 times the
value u0 found in case of a cantilever made of full material.
The achieved results are given in Figure 2, 3 and 4, respec-
tively. All the solutions consist in black and white distributions
of material. In all the cases the displacement at the loaded point
equals the enforced bound ulim, whereas the volume fraction
reads 62.06%, 49.04% and 40.82%, respectively.

In view of the adoption of multiple load cases, an addi-
tional simulation is performed considering load Q, enforcing
a maximum deflection at the loaded point equal to 1.50 times
the value found in case of a cantilever made of full material,
see Figure 1(b). The achieved solution is represented in Figure
5. The relevant volume fraction reads 50.38%.

Fig. 1: Geometry and boundary conditions for the considered
examples.

B. Multiple load cases

The formulation presented in Section II allows considering
multiple load cases, controlling the displacements point-wise
in each of them. Figure 6 shows the optimal cantilever found
when load P and Q act independently, see Figure 1(c). Indeed,
two load cases are defined to enforce in each of two that the
vertical displacement under the loaded point is not above 1.5
times that read for a specimen made of full material. With a
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Fig. 2: Optimal design considering the load P , with ulim =
1.25u0. Final volume fraction 62.06%.

Fig. 3: Optimal design considering the load P , with ulim =
1.50u0. Final volume fraction 49.04%.

slight increase in terms of volume fraction, now 51.42%, with
respect to the layouts represented in Figure 3 (49.04%) and
5 (50.38%), a new design is found that fulfills the required
performance in terms of structural response.

C. Distributed load

A final investigation is performed looking at the optimal
design when a uniformly distributed load p acts along the
bottom edge over a length equal to L/3 in the vicinity of the
free end, see Figure 1(d). The multi-constrained formulation
in Eqn.(2) allows enforcing local constraints at each one of the
points at which the distributed load is applied, herein m = 101,
all referring to the same load case. Again, it is required that
each displacement is not bigger than 1.5 times that read for a
specimen made of full material. The optimal solution is shown
in Figure 7. A different design is found with respect to the
previous ones. Indeed, the load application length and the new
line of action of the resultant call for a new geometry. It is
remarked that the solution is not far from the others, as far
as the volume fraction at convergence is concerned (herein it
reads 53.43%).

IV. CONCLUSION

In this contribution, a displacement-constrained minimum
weight problem of topology optimization has been formulated
to design lightweight structures that fully respect local enforce-
ments on the deflection. An Augmented Lagrangian approach
that has been recently proposed in the literature for the solution
of stress-constrained problems attacked by sequential convex
programming, has been herein implemented considering dif-
ferent types of displacement-constrained problems.

Fig. 4: Optimal design considering the load P , with ulim =
1.75u0. Final volume fraction 40.82%.

Fig. 5: Optimal design considering the load Q, with ulim =
1.50u0. Final volume fraction 50.38%.

At first, the approach has been tested considering single
load cases encompassing one point force. Then, it has been
preliminary adopted to cope with multiple load cases including
point forces, and to address a distributed load within a single
load case. The adoption of filtering techniques originally
proposed to achieve black and white design in compliance-
based topology optimization is shown to give crisp results.

The ongoing research is focused on further tests of the
method, especially considering problems with extended set of
constraints, addressing multi-scale modeling as well, see e.g.
[14].
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[4] J. Lógó, B. Balogh, E. Pintér, “Topology optimization considering
multiple loading”, Comput. Struct., .vol 207, pp. 233-244, 2018.

[5] W. Achtziger, “Topology Optimization of Discrete Structures”, in Topol-
ogy Optimization in Structural Mechanics, Rozvany G.I.N. Ed., Interna-
tional Centre for Mechanical Sciences (Courses and Lectures), vol 374.
Vienna: Springer, 1997.

[6] K. Svanberg, “Method of moving asymptotes - A new method for
structural optimization”, Int. J. Numer. Methods Eng., vol. 24(2), pp.
359-373, 1987.

[7] M. Bruggi, “A constrained force density method for the funicular analysis
and design of arches, domes and vaults”, Int. J. Solids Struct., vol. 193-
194, pp. 251-269, 2020.

M. Bruggi et al. • Optimal design with multiple displacement constraints

000190



Fig. 6: Optimal design considering the load P and Q as two
load cases, with ulim,i = 1.50u0,i for i = 1, 2. Final volume
fraction 51.42%.

Fig. 7: Optimal design considering the load p, with ulim,i =
1.50u0,i ∀i. Final volume fraction 53.43%.

[8] O. Giraldo-Londoño, G.H. Paulino, “PolyStress: A matlab implemen-
tation for local stress-constrained topology optimization using the aug-
mented lagrangian method”, Struct. Multidiscip. Optim., vol 63(4), pp.
2065-2097, 2021.

[9] D.P. Bertsekas, Nonlinear programming, 2nd edn. Nashua: Athena Sci-
entific, 1999.

[10] M.P. Bendsøe, N. Kikuchi, “Generating optimal topologies in structural
design using a homogenization method”, Comput. Methods Appl. Mech.
Eng. vol. 71(2), pp. 197-224, 1988.

[11] T. Borrvall, J. Petersson, “Topology optimization using regularized
intermediate density control”, Comput. Methods. Appl. Mech. Eng., vol.
190(37-38), pp. 4911-4928, 2001.

[12] B. Bourdin, “Filters in topology optimization”, Int. J. Numer. Methods
Eng., vol. 50(9), pp. 2143-2158, 2001.

[13] F. Wang, B. Lazarov, O. Sigmund, “On projection methods, convergence
and robust formulations in topology optimization”, Struct. Multidiscip.
Optim., vol. 43(6), pp. 767-784, 2011.

[14] M. Bruggi, A. Taliercio, “Hierarchical infills for additive manufacturing
through a multiscale approach”, J. Optim. Theory Appl., vol. 187(3), pp.
654-682, 2020.

12th IEEE International Conference on Cognitive Infocommunications – CogInfoCom 2021 • September 23-25, 2021 • Online on MaxWhere 3D Web

000191



M. Bruggi et al. • Optimal design with multiple displacement constraints

000192




